Sduringthemetabolicstudy.Hyperlipidemicsubjectsoftenhave delayedLDLapoB-100catabolism(seesupplementalTable S3).Wehavedocumentedalsothatfeedingresultsinmore directTRLapoB-100catabolismandlessconversionofTRL apoB-100toLDLapoB-

Sduringthemetabolicstudy.Hyperlipidemicsubjectsoftenhave delayedLDLapoB-100catabolism(seesupplementalTable S3).Wehavedocumentedalsothatfeedingresultsinmore directTRLapoB-100catabolismandlessconversionofTRL apoB-100toLDLapoB-100,aswellasdelayedLDLapoB-100 catabolism,comparedwiththefastingstate(29).Despite thedifferences,ourfindingsareconsistentwiththesepreviousstudiesandsupporttheconceptthatapoBinsdLDLs iscatabolizedmoreslowlythanapoBinlbLDLs. Our information indicate that approximately 80 of lbLDL apoB-100isderivedfromTRLapoB-100,withtheremainderMetabolism and proteomics of LDL subfractionsTABLE three. ApolipoproteincompositionoflbLDLandsdLDLduringplaceboandtreatmentwithrosuvastatin40mg/dayPlacebo(totalproteinspectralintensity,logbase2) Proteins lbLDL sdLDL PbRosuvastatin(totalproteinspectralintensity,logbase2) lbLDL sdLDL PbRosuvastatinvs.placebo,achange, (P) lbLDL sdLDLApoA-I ApoA-II ApoA-IV ApoC-I ApoC-II ApoC-III ApoC-IV ApoD ApoE ApoF ApoM19.9.9 19.0.five 0 9.1.six 22.0.1 23.four.three 10.1.1 12.8.two 23.5.1 11.7.8 18.5.22.8.5 19.3.7 14.7.7 19.8.0 20.three.9 23.four.4 13.three.3 20.7.4 22.7.four 21.1.six 19.7.0.03 0.72 0.02 0.16 0.11 0.93 0.64 0.21 0.53 0.13 0.20.4.9 7.9.eight 0 7..9 20.2.8 21.8.five three.3.3 12.five.1 22.three.eight 11.six.7 three.eight.22.9.5 19.two.three 14.1.five 19.8.six 20.4.four 23.five.two 13.4.4 20.5.4 22.five.four 20.9.two 18.8.0.09 0.08 0.02 0.07 0.78 0.02 0.07 0.19 0.92 0.12 0.2.six (0.64) 58.1 (0.08) 0 2.1 (0.87) 8.2 (0.11) 6.9 (0.04) 40.6 (0.17) 1.three (0.07) 5.6 (0.30) 0.6 (0.79) 80.two (0.02)0.8 (0.74) 0.2 (0.88) 3.1 (0.04) 0.7 (0.97) 1.3 (0.94) 0.4 (0.92) 0.1 (0.95) 1.three (0.46) 0.6 (0.81) 0.7 (0.70) three.six (0.43)Dataarepresentedasthetotalproteinspectralintensity,logbase2,oftheindividualproteins,ascalculatedbyAgilentSpectrumMill(Agilent Technologies),mean EM,n=5. a PercentchangerelativetoplacebowascalculatedonanindividualbasisandsummarizeddescriptivelybyLDLsubfraction.Significancefor comparisonofrosuvastatinphaseabsolutevalueswithplacebophaseabsolutevalueswasdeterminedbyusingapairedt-test. b SignificanceforcomparisonofsdLDLwithlbLDLwasdeterminedbyusingapairedt-test.being made straight. Additionally they show that about 60 of sdLDL apoB-100 is derived from lbLDL apoB-100,withmostoftheremaindercomingdirectlyfrom TRLapoB-100.Theredoesappeartobeasmallpercentage ofsdLDLapoB-100derivedfromdirectliverproduction. Thesepercentagesarenotgreatlyalteredwithrosuvastatin therapyforeitherlbLDLapoB-100orsdLDLapoB-100.Nikkomycin Z Fungal In thisstudy,wedidnotsubfractionatetheTRLfraction,and, therefore,wewereunabletoascertainwhichportionofthe TRLfractionmayhavebeentheprecursorof,orcontributed more to, the sdLDL fraction, compared using the lbLDLfractionorhowrosuvastatinmayhavemodifiedthe delipidationcascademorespecifically.Nosiheptide Autophagy Aguilar-Salinasetal.PMID:23381601 (27) concluded that “a clear precursor-product relationship”wasobservedbetweentheVLDL,IDL,lightLDLand denseLDLfractions.Incontrast,Zhengetal.(28)located that 83 of sdLDL apoB-100 was derived directly from IDLs, with only 8 getting derived from lbLDLs. Packard andcolleagues(302)didnotexaminethemetabolismof LDLsubfractionsdirectly;on the other hand,theydidproposethat, in subjects with moderate hypertriglyceridemia, there is likelytobeincreasedconversionoflargeVLDLapoB-100 directlytosdLDL.Itshouldbenotedthattheseparationof LDL subfractions in all probability final results within the isolation of heterogeneous populations of particles that have distinctive metabolic and, hence, kinetic properties. Itwasimportanttoexaminedifferencesintheproteome oflbLDLsandsdLDLsonbothplaceboandrosuvastatin, whichpotentiallymightexplainthedifferenceinthec.